Answer all questions.

Q1:
1/ why passive filters are called passive?
2/ Define LPF and HPF
3/ what do we mean by Brickwall diagram? Give an example.
4/ write the Polar form of $Z = (9 - j5)$ impedance, and draw the Phaser diagram.
5/ show that the form factor of a periodic wave is equal to 1.111

Q2:
You have a series RC electronic circuit with:
- $V_s = 340 \text{ v Peak}$, $C = 250 \mu F$, $R = 20 \Omega$
Find the current and Voltages across R and C, and draw the circuit and its phaser Diagram to show the phase angles.

Q3:
Show that Power in Inductance L is: $P_L = -0.5V_m I_m \sin 2\omega t$.
Write the equation for the power in a Capacitance, and state the difference between the power across L and C.
Draw the waveforms of the power for $L \& C$ compared with their voltages.

Q4:
For a series RLC circuit if:
- $V_s = 120 \text{ v}$, $R = 50 \Omega$, $C = 50 \text{nF}$
Find:
- f_0 , Q , f_1 , f_2 .

Q5:
For the RC network the amplitude response $A_v = 1/[(\omega/\omega_c)^2 + 1]^{1/2}$
Find:
- i) A_{dB}
- ii) A_{dB} if $\omega >> \omega_c$
- iii) A_{dB} if $\omega = \omega_c$
- iv) Φ (phase response)
- v) if $R = 100 \Omega$, $\omega_c = 5k \text{ rad/sec}$ find:
 - The capacitor value, and τ, and A_{dB} if $\omega = 100\omega_c$
